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1 Intro

This talk basically consists of 3 parts: we first analyze a little more closely supercuspidal repre-
sentations and show how they are “building blocks” for the category of smooth representations
of G. Then we give a concrete example, constructing almost from scratch a supercuspidal repre-
sentation of GL2pF q; this will be done by following a general procedure that lets us create many
supercuspidal representation under very mild conditions on the group G. Finally, we will state
the Local Langlands Correspondance for GLn, which will underline once again the importance of
supercuspidal representations, and show how this relates to parabolic induction.

Throughout the talk, G is a connected reductive group defined over a non-archimedean local
field F with ring of integers O and uniformizer $. Denote G “ GpF q its F -rational points;
P “ PpF q for a parabolic subgroups P of G, with Levi decomposition P “ MN . Sometimes P
will be assumed to be minimal, and we will state when this is so.
We will consider smooth complex representations. Every representation of G is understood to
be smooth, and the category of such representations is denoted ReppGq, with IrreppGq the set of
isomorphism classes of irreducible representations.

2 Supercuspidal representations

We recall a few definitions. Fix a minimal parabolic P0 Ă G and a maximal split k-torus T0 Ă P0.
Any parabolic k-subgroup P Ĺ G is G-conjugate to a unique P1 Ą P0; we say P is standard if
P Ą P0, and for any such parabolic there exists a unique Levi factor M containing T0(see [1],
section 2.1), which is hence called a standard Levi. Notice that P “ P0M is determined by M ,
hence when we consider (standard) parabolics we will just mention the associated standard Levi’s
(and denote rP,G as rM,G).

Definition 1. A representation π P ReppGq is supercuspidal if for every proper parabolic k-
subgroup P Ă G, the Jacquet functor rM,Gpπq is zero. In fact, it suffices to consider standard
parabolics P.

We now give a slightly different interpretation of supercuspidality in terms of a very important
subgroup of G.

Let XpGq denote the group of algebraic characters of G defined over F . We set

G1 :“
č

χPXpGq

ker |χ|,
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this is the subgroup of G consisting of elements sent to Oˆ by every rational character χ.

Fact 1. This subgroup has many interesting properties (see [2], remark 7.2.5):

1. G1 contains every compact subgroup of G.

2. G1 is an open, closed, normal, unimodular subgroup of G.

3. G{G1 is isomorphic to Zm where m is the k-rank of the maximal central k-torus of G.

4. G{ pZG1q is finite, equivalently Z{ pZG1q is a finite-index subgroup in G{G1.

5. Z XG1 is compact.

Example 1. When G “ GLnpF q, we simply have G1 “ tg P GLnpF q | det g P Oˆu.

The following theorem partially underlines the importance of G1.

Theorem 2. Let π P ReppGq. The following are equivalent:

1. π is supercuspidal.

2. resGG1π is a finite representation, i.e. every matrix coefficient is compactly supported over
G1.

3. every matrix coefficient is compactly supported modulo the center Z Ă G.

Conditions p2q and p3q are clearly very similar in spirit, and the proof of their equivalence boils
down to the properties of G1 mentioned above.
We will show a complete proof for p1q ðñ p3q only for G “ GLn as the general case, which is
not much more complicated, needs a little bit of theory of root systems. For a general proof see
[13], theorem VI.2.1.

Before we proceed to the proof, let’s define an Hecke-algebra version of compact-support for
matrix coefficients. Let K Ă G be a compact open subgroup, v P V and consider

Dv,K : G ÝÑ V Dv,Kpgq “ πpeKqπpg
´1
q.v “

ż

G

πphg´1
q.v dµKphq

where dµK is a Haar measure on K. Notice that Dv,K has compact support if and only if Dv,K1

has compact support for any compact open subgroup K 1, so for the set of functions tDv,Ku the
notions of compact support and compact support modulo Z are independent of the choice of K.

Fact 3. Every matrix coefficient is compactly supported (modulo the center Z) if and only if every
Dv,K is compactly supported (modulo Z).

Proof. We prove the version for compact support, the other being very similar.
Let mλ,v be a matrix coefficient. Take a compact open subgroup K fixing λ, so it’s easy to check
that Suppmλ,v Ă SuppDv,K which proves one direction.

Vice-versa, fix v and K; we want to find finitely many λi such that

SuppDv,K Ă

l
ď

i“1

Suppmλi,v
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. Obviously Dv,K has image contained in V K , hence for any nonzero vector in the image we can

find λ P rV K which does not kill it. Thus, it’s enough to show that ImpDv,Kq is finite-dimensional.
Arguing by contradiction suppose it is not, so we can find a sequence tgmu Ă G such that vm “
Dv,Kpgmq are countably many linearly independent vectors, and thus the set tgmu is not contained
in any compact set.
Define a functional Λ P rV K as Λpvmq “ 1 and extend by zero on the rest of V . A quick check
shows that

1 “ Λpvmq “ µpKqmΛ,vpgmq

and thus tgmu Ă SuppmΛ,v, which contradicts the fact that mΛ,v is compactly supported.

Proof of the Theorem. We now show that π is supercuspidal if and only if each Dv,K is compactly
supported modulo Z.

Suppose first that π is supercuspidal and fix v P V . We can pick a small enough congruence
subgroup K “ Ki “ idn `$

iMn pOq such that Ki fixes v.
Recall the Cartan decomposition for GLnpF q: denoting K0 “ GLnpOq we have

G :“ GLnpF q “ K0Λ`K0 where Λ` “
 

diagp$l1 , . . . , $lnq such that l1 ě . . . ě ln
(

.

If tx1, . . . , xru is a choice of representatives for KzK0, we have then

G “
r
ď

i,j“1

xiKΛ`Kxj,

and (using the notation apgq “ πpeKq ˚πpδgq ˚πpeKq so that πpapgqq “ πpeKqπpgqπpeKq) it suffices
to show that

@i, j λ ÞÑ πpxiqπpapλqqπpxjqv has compact support modulo Z in Λ`

hence that
λ ÞÑ πpapλqqv has compact support modulo Z in Λ`.

Now we make a brief digression concerning the structure of GLn. Suppose that the minimal
parabolic fixed is the standard Borel of upper triangular matrices. Every standard unipotent
subgroup N admits a description

N “ Nλ “

!

x P G | lim
nÑ8

Adpλnqx “ 1
)

for some λ P Λ`, and vice-versa any λ “ pl1, . . . , lnq P Λ` determines a partition of n (by means
of “consecutive equal li’s”) and thus a unique standard unipotent subgroup, which is exactly Nλ.
If we fix a standard parabolic P “MN , our congruence subgroup K admits an Iwahori factoriza-
tion with respect to P : K “ pK XNqpK XMqpK XN´q and we have then a filtration of N “ Nλ

by compact subgroups
ď

n

λ´npK XNqλn “ N

It is then not hard to show that

ď

n

ker apλnq X V K
“ V pNq X V K .
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The latest equivalence is the main ingredient for the rest of the proof. Fix then a basis ν1, . . . , νn in
Λ` and let λ “

ř

miνi. By the cuspidality assumption, for every nontrivial unipotent N “ Nλ ‰ 1
we have V “ V pNλq and hence

V K
“ V K

X V pNλq “
ď

n

ker apλnq X V K .

Thus for every w P V K there is a ki,w such that πpapνki qq.w “ 0 for every k ě ki,w. As apλq “
ś

i apν
mi
i q, taking L “ maxi ki,w and w “ πpeKqv gives that

πpapλqq.v “ 0 if any mi ě L.

We bounded the mi’s above, now it remains to bound them below in order to get the claim. We
can only get a bound below by using the ’modulo Z’ assumption: in fact up to multiplication by
an element of Z, each λ P Λ` has every coefficient mi ě 0. This concludes the first part of the
proof.

Vice-versa, assume that every Dv,K is compactly supported modulo the center Z. By reversing
the argument above, this is equivalent to

λ ÞÑ πpapλqq.v having compact-modulo-center support in Λ`.

But for any fixed non-central λ P Λ`, the sequence pλnq eventually leaves every compact-modulo-
center subset C of Λ`, because each such subset C “ C 1Z has C 1 Ă Λ` compact, hence

max
λPC1

pli ´ ljq ăM “MpC 1q denoting λ “ diagp$l1 , . . . , $lnq.

Z preserves such differences li ´ lj, thus preserves MpC 1q “: MpCq, but the sequence pλnq does
not admit such an upper bound.
Thus πpapλnqq.v “ 0 for any n large enough, i.e. V K “

Ť

n ker apλnq. Paired with

ď

n

ker apλnq X V K
“ V pNλq X V

K ,

this shows
V pNλq X V

K
“ V K .

This is true for every congruence subgroup Ki, because each such subgroup admits an Iwahori
factorization with respect to P “MN .
By smoothness V “

Ť

i V
Ki and hence V “ V pNq whenever N “ Nλ for a non-central λ P Λ`.

But central elements λ P Λ`XZpGq give Nλ “ 1G, so that the only non-trivial Jacquet module is
rG,Gpπq. This shows π is supercuspidal.

We also have the following easy remark:

Remark. Suppose π and rπ are irreducible. Then to prove that π is supercuspidal it’s enough to
show one nonzero matrix compactly supported modulo the center.
In fact, if mλ,v is compactly supported modulo the center and nonzero, then any other mλ1,v1 is a
finite linear combination of matrix coefficients m

rπpg1jqpλq,πpgiqpvq
: each of these is a translate of mλ,v

and thus still has compact support modulo the center.

Definition 2. A representation π P ReppGq is cuspidal if it is admissible and supercuspidal.
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Example 2. Every irreducible supercuspidal representation is cuspidal.

This follows from the following fact.

Theorem 4 (Jacquet, 1975). Let π P ReppGq be irreducible. Then it is admissibile.

Proof. It has been proven before that π is a subrepresentation of some IndG,Mρ for ρ a supercus-
pidal representation of the Levi M . As parabolic induction preserves admissibility, it suffices to
prove the claim when π is supercuspidal.
We use the characterization of supercuspidal via matrix coefficients. Arguing by contradiction,
suppose it is not admissibile and hence dimC V

K “ 8 for some open compact K Ă G. Then

prV qK – pV K
q
˚
“ HomCpV

K ,Cq has uncountable dimension.

Fix a nonzero v P V K and (denoting by Cpπq the space of matrix coefficients of π) consider the
map

prV qK
Γv
ÝÑ Cpπq λ ÞÑ mλ,v

which is injective as Gv spans V by irreducibility.
Denoting by ωπ the central character of π, the image is a space of functions f : G ÝÑ C such that

fpzkgk1q “ ωπpzqfpgq,

Thus on a coset ZKgK the value of f is either constantly zero or always nonzero. Due to Cartan
decomposition we have

ZzG “
ď

g

ZzZKgK,

a disjoint union of countably many such cosets (again by Cartan decomposition G “ KΛ`K with
Λ` countable). Moreover, f is compactly supported modulo the center, hence f is supported on
finitely many such cosets. So the vector space of such f ’s has countable dimension, which gives a
contradiction due to injectivity of Γv.

Here’s why we like supercuspidal representations:

Fact 5. Let π P IrreppGq, then there exists a parabolic P “MN and an irreducible supercuspidal
σ P IrreppMq such that π is a subrepresentation of IndG,Mσ.

This has been shown before, except the fact that σ is irreducible. But now rM,Gπ is finitely
generated, so it has an irreducible quotient σ by a Zorn’s lemma argument, hence

0 ‰ HomMprM,Gπ, σq “ HomGpπ, IndG,Mσq.

Thus any irreducible representations embeds into a parabolically-induced representation from an
irreducible supercuspidal from some Levi! So to ”generate” representations for G it suffices to
generate the supercuspidal ones for all its Levi subgroup (G included), and the general philosophy
is that we should mainly worry about how to create supercuspidal reps.

As an example, consider G “ GLn: if as minimal parabolic we take the Borel subgroup of
upper triangular matrices, we have seen that choosing a standard Levi corresponds to choosing
an ordered partition of n. Then we have the following result (see [1], theorem 4.2):
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Theorem 6. Let pn1, . . . , nkq be an ordered partition of n and ρi P IrreppGLniq be cuspidal repre-
sentations. Let M be the standard Levi corresponding to such partition and denote

π “ IndG,M pρ1 b . . .b ρkq .

Then π is irreducible if and only if ρi fl νρj for every i, j, where νpgq “ | det g|.

Remark. Clearly ρ fl νρ because the center of GLm has elements whose determinant is not a unit
in O, and thus the two representations have different central characters.

Example 3. Take n “ 6. If we pick the partition p1, 2, 3q, or any permutation of it, then obviously
any choice of ρi’s will give rise to an irreducible representations, as the condition ρi – νρj implies
in particular ni “ nj.
Similarly, we can take the partition p2, 2, 2q and ρi “ ρ for each i. By the remark, the induced
representation is also irreducible. We will see later what an irreducible cuspidal representation of
GL2 looks like.

3 Construction of a supercuspidal representation

We will construct an irreducible supercuspidal representation for G “ GL2.
We start by proving a very general result.

Theorem 7. Let H be an open subgroup of G, containing the center Z and compact modulo the
center. Let σ P ReppHq. If π “ c-IndGH σ is irreducible and admissibile, then it is supercuspidal.

Proof. Denote the representation space of σ by V .
As π is irreducible and admissibile, the contragredient representation rπ is also irreducible (since
subrepresentations of π and rπ correspond to eachother by taking orthogonal complements, in case
π, and thus rπ, are admissibile).
It is then enough to find one nonzero matrix coefficient compactly supported modulo the center.
Let then v P V and λ P rV be nonzero vectors such that λpvq ‰ 0, define fv P c-IndGH V as

fvpgq “

"

σphqv if h “ g P H
0 otherwise

and similarly define fλ P c-IndGH rV .
The composition map

c-IndGH V ÝÑ V ÝÑ C g ÞÑ fp1q ÞÑ xfλp1q, fp1qy

is clearly a smooth functional on c-IndGH V , hence fλ can be regarded as an element of rπ, and as
such is nonzero because

xfλp1q, fvp1qy “ xλ, vy ‰ 0.

We thus get a matrix coefficient for π:

mfλ,fvpgq “ xfλ, πpgqfvy “ xfλp1q, pπpgqfvq p1qy “ xλ, fvpgqy.

This is nonzero when g “ 1, and has support contained in the support of fv, which is H that is
compact modulo Z by assumption. Hence this matrix coefficient is compactly supported modulo
the center.
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Denoting by k “ O{p the residue field of F , consider now an irreducible representation pσ, V q
of the group GL2pkq. Notice that this group is finite. By means of the canonical quotient map

GL2pOq� GL2pkq

we inflate σ to a representation of the maximal compact subgroup K “ GL2pOq.
The central character of the finite group representation is lifted to a character χ of Oˆ which

we extend to a unitary character of Fˆ (still denoted by χ). Then we can naturally consider σ as

a representation of ZK where z “

ˆ

x 0
0 x

˙

P ZpGq – Fˆ acts by χpxq. Define the compactly-

induced representation π “ c-IndGZK σ and denote by W “ c-IndGZKpV q the representation space.

Theorem 8 (see [5], section 4.8). Suppose that the following assumption on σ holds:

σ does not admit a nonzero vector fixed by Npkq “

"ˆ

1 ˚

0 1

˙*

the (unique) standard unipotent subgroup of GL2pkq. Then π is an irreducible supercuspidal rep-
resentation of GL2pF q.

Proof. Notice that as σ is a finite-dimensional representation, it is unitarizable, so let p, q be some
positive-definite Hermitian inner product on V which is ZK-invariant. Define then

xf1, f2y :“

ż

G

pf1pgq, f2pgqqdg @fi P W,

it is not hard to show that this gives a G-invariant, positive-definite Hermitian inner product on
W , thus making π unitary.
It suffices to show that π is irreducible, and then from a theorem in the previous section it follows
that π is admissible and from the previous theorem we get that π is supercuspidal. As we know
that π is unitary, to show that it is irreducible it suffices to show that HomGpW,W q has dimension
1: then if U Ă W were a nontrivial subrepresentation, the orthogonal projection onto U is an
element of such a Hom-space, so it suffices to show that it’s not the identity, i.e. that there’s some
element of W orthogonal to U .
Decompose pπ,W q, into its K-isotypic components. By compactness of K, each isotypic compo-
nent is finite dimensional and we have algebraic direct sums

à

τ

W pτq “ W Ą U “
à

τ

Upτq

where Spτq is the τ -isotypic component for a representation space S. As W ‰ U , there is some
W pτq strictly containing Upτq, so pick a vector in the orthogonal complement of Upτq with respect
to W pτq. This is orthogonal to the whole U as the spaces W pτq and W pτ 1q are mutually orthogonal
if τ fl τ 1.
We have c-IndGZKpV q Ă IndGZKpV q so it suffices to show that

dim HomG

`

W, IndGZKpV q
˘

“ 1

and by Frobenius reciprocity

HomG

`

W, IndGZKpV q
˘

– HomZK presW,V q .
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Now we use a Mackey theory argument: first of all, fixing a set of representatives for KzG{ZK,
the Cartan decomposition makes it clear that we can pick them to be

γn “

ˆ

$n 0
0 1

˙

@n P N.

Then consider the subgroups Sn “ K X γ´1
n Kγn acting on V n “ V as σnpgq :“ σpγngγ

´1
n q. We

have then a decomposition

Hom pres pW q, V q –
à

nPN
HomSn pV, V

n
q

so it suffices to show that all these spaces are zero-dimensional, except one which is 1-dimensional.
Obviously for n “ 0 we obtain HomKpV, V q which is one-dimensional as pσ, V q is irreducible. If
n ě 1, notice that NpOq Ă K X γ´1

n Kγn “ Sn and then if φ P HomSn pV, V
nq we have for each

ˆ

1 a
0 1

˙

P NpOq that

φ

ˆ

σ

ˆˆ

1 a
0 1

˙˙

.v

˙

“ σn
ˆˆ

1 a
0 1

˙˙

.φpvq “ σ

ˆˆ

1 $na
0 1

˙˙

.φpvq “ φpvq

because σ has been lifted from a representation of GL2pF q, and thus acts trivially on Nppq, the
subgroup of unipotent upper triangular matrices with upper-right element in p.

We finally use the assumption on σ, which tells us that v ‰ σ

ˆˆ

1 a
0 1

˙˙

.v for some a P O (in

fact, for some coset a` p P O{p – k). But every φ P HomSn pV, V
nq acts in the same way on the

two vectors, and this is only possible if each φ “ 0, ultimately proving the claim.

The only thing that remains to do is provide a representation σ of GL2pkq having the required
property:

σ does not admit a nonzero vector fixed by Npkq “

"ˆ

1 ˚

0 1

˙*

.

Consider the (unique) quadratic extension k1 Ą k. Choosing a k-basis for k1 makes it isomorphic to
k‘k as a vector space, and thus embeds pk1qˆ into GL2pkq in such a way that ZpGq – kˆ Ă pk1qˆ.
Fix now θ a multiplicative character of pk1qˆ that is regular (i.e. not invariant by the nontrivial
element of Galpk1|kq ) and ψ a nontrivial additive character of k and define

θψ : ZN ÝÑ C
ˆ

a 0
0 a

˙ˆ

1 u
0 1

˙

ÞÑ θpaqψpuq.

Fact 9. Consider the virtual representation

π “ IndGZNθψ ´ IndGpk1qˆθ.

Then this is an irreducible representation of GL2pkq and does not contain the trivial character of
Npkq (equivalently, does not admit nonzero vectors fixed under Npkq).

The proof is just representation theory of finite groups: use Mackey’s formula and the knowl-
edge of conjugacy classes in GL2pkq to compute the character of π and prove the two claims.
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4 The Local Langlands Conjecture for GLn

In this section, we give an overview of the Local Langlands conjecture for GLn over a non-
archimedean local field, and connect it to our study of the supercuspidal representations. From
now on, G “ GLnpF q unless otherwise specified.

Suppose first of all that n “ 1, then GLnpF q “ Fˆ. An admissibile irreducible representation
is just an homomorphism φ : Fˆ ÝÑ Cˆ with kernel containing 1 ` $mO for some m. This is
equivalent to saying that φ is continuous with respect to the discrete topology on Cˆ.
Now we notice that, due to local class field theory, Fˆ – W ab

F (the abelianization of the Weil
group of F ), so that φ is just a complex representation of W ab

F which is continuous with respect
to the discrete topology on GL1pCq “ Cˆ.
The Local Langlands Conjecture for GLn concerns a very similar statement for every n, not just
n “ 1. In practice, local class field theory gives us the conjecture for n “ 1.

Let’s now recall the main ingredients.
The absolute Galois group of F surjects canonically onto the absolute Galois group of the residue
field kF “ k:

v : GalF “ GalpF |F q ÝÑ Galpk|kq “ Galk ÝÑ 0

and one defines the inertia subgroup IF to be the kernel of this map. As k is finite of cardinality q,
we know very well its finite extensions and it’s easy to check that Galpk|kq – Ẑ “ lim

ÐÝn
Z{nZ and

Z embeds canonically into this group: in fact Z Ă Galk is generated by the (arithmetic) Frobenius
x ÞÑ x|k|.

Definition 3. We define the Weil group to be the preimage of Z under the above surjective map:

WF “ v´1
pZq

and so we have an exact sequence

1 ÝÑ IF ÝÑ WF
v
ÝÑ Z ÝÑ 0

However, we do not give WF the induced topology, but we give it the topology such that IF is open
in WF with its usual (profinite) topology and v is continuous once Z has the discrete topology.
Next, fix a geometric Frobenius element Φ P WF i.e. an element such that its image in Galk is the
inverse of the arithmetic Frobenius. We can take the map v as sending Φ to 1. The second condition
on the topology of WF is equivalent to saying that multiplication by Φ is a homeomorphism.

We also get a map
} ¨ } : WF ÝÑ Rˆ` x ÞÑ }x} “ q´vpxq

so that in particular }Φ} “ q´1.

Theorem 10 (Local reciprocity map). We have a topological isomorphism

θF : Fˆ ÝÑ W ab
F .

Moreover, this sends Oˆ onto the inertia subgroup IF and is compatible with the valuation on Fˆ

and the map v defined above.
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This lets us express } ¨ } in a different way: it is the composition of

WF � W ab
F

θ´1
F
ÝÑ Fˆ

|¨|F
ÝÑ Rˆ`.

Now we encounter a small technical problem. Due to the particular nature of local fields,
representations of the Weil group are not exactly what will parametrize representations of GLnpF q.
We need a slight twist to take into account, for instance, the existence of special representations
i.e. of irreducible subquotients of a non-irreducible principal series.

Definition 4. Define the Weil-Deligne group

W 1
F “ WF ˙ C

where WF acts on C as wxw´1 “ }w}x.
An n-dimensional semisimple Weil-Deligne representation (also called an admissible homomor-
phism or Frobenius-semisimple representation) of W 1

F is a pair pρ,Nq such that

•
ρ : WF ÝÑ GLnpCq

is a continuous homomorphism (with respect to the discrete topology on GLnpCq) such that
the image consists of semisimple matrices; in fact, it’s enough to check that the image of
any Frobenius element is semisimple.

• N is a nilpotent endomorphism of Cn such that

ρpwqNρpwq´1
“ }w}N @w P WF .

Notice that when n “ 1, the nilpotent endomorphism is just 0 and thus we recover a continuous
representation of the Weil group WF , i.e. an admissibile character of Fˆ via the local reciprocity
map.

Example 4. This example will come up later, so it’s both non-trivial (because N ‰ 0) and
particularly important.
Fix n and define the following n-dimensional Weil-Deligne representation Sppnq “ pρ,Nq. Setting
V “ Ce1 ‘ . . .‘ Cen we put

ρpwqei “ }w}
iei

and
Nei “ ei`1 @i ă n Nen “ 0.

Fact 11 (see [16], section 4.1.5). Every indecomposable representation of W 1
F is of the form φ b

Sppnq with φ irreducible.

The tensor product of Weil-Deligne representations is defined as

pρ1, N1q b pρ2, N2q “ pρ1 b ρ2, N1 b 1` 1bN2q.

This definition, at least the one for the nilpotent endomorphism, may seem unreasonable but it is
a theorem of Grothendieck ([15], Appendix) that any l-adic representation ρ of GF admits an open
subgroup where ρ acts by unipotent matrices, and hence as the exponential of a nilpotent matrix
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N . Taking the tensor product of two such representations ρi with respective nilpotent matrices Ni

give us a representation where (on the appropriate open subgroup) the nilpotent endomorphism
is N1 b 1` 1bN2.

We will state now the Local Langlands Conjecture for GLn over a non-archimedean field, then
we will proceed to define the various objects involved with it.
Denote by RepnpW

1
F q the equivalence classes of n-dimensional semisimple Weil-Deligne represen-

tations, up to isomorphism, and similarly by AnpF q the category of smooth irreducible complex
representations of GLnpF q. Then we have

Theorem 12 (Local Langlands Conjecture for GLnpF q). With F fixed, there exists a collection
of bijective maps AnpF q ÝÑ RepnpW

1
F q sending π to ρπ having the following properties:

1. For n “ 1 the bijection is the local class field theory case as above;

2. For any π P AnpF q and π1 P An1pF q we have a correspondence of L-functions and ε-factors:
this means that to each Frobenius-semisimple representation of W 1

F we can associate an L-
function and an ε-factor (satisfying nice analytical properties), and similarly we associate
to each smooth representation of GLnpF q an L-function and an ε-factor; then π P AnpF q
corresponds to ρ P RepnpW

1
kq if and only if the respective L-functions coincide (and then the

ε-factors will coincide as well).
Moreover, tensor products preserve this:

Lps, ρπ b ρπ1q “ Lps, π ˆ π1q εps, ρπ b ρπ1 , ψq “ εps, π ˆ π1, ψq,

where ψ is a nontrivial additive character of F ;

3. For any π P AnpF q, det ρπ corresponds to the central character ωπ under the local class field
theory bijection;

4. The bijection commutes with taking contragradients;

5. The bijection commutes with twisting by multiplicative characters of Fˆ, i.e.

ρπbχ “ ρπ b χ

for any character χ of Fˆ.

6. Supercuspidal representations of GLnpF q correspond to irreducible semisimple Weil-Deligne
representations, and in fact each such natural correspondence respecting the above five prop-
erties give a natural correspondence of ApF q with ReppW 1

F q.

Let’s now define the objects involved in the theorem, starting with L-functions, that are easier
to define.

Definition 5 (L-function for a Weil-Deligne representation). Let φ “ pρ,Nq be an n-dimensional
semisimple Weil-Deligne representation. Then its associated L-function is

Lps, φq :“ det
´

1´ ρpΦq|
V
IF
N

q´s
¯´1

where V IF
N is the subspace of kerN fixed by ρpIF q, which is a finite group as IK is profinite and

GLnpCq contains no small subgroups.

11



Definition 6 (L-function for a smooth representation of GLnpF q). We follow [11], section 1, for
this definition.
Fix an admissibile representation π P ReppGLnpF qq. Let Φ be a Bruhat-Schwartz function on
MatnpF q (i.e. locally constant and compactly supported), f a matrix coefficient of π. The zeta
integral associated to such data is

ZpΦ, s, fq “

ż

G

Φpgq| det g|sfpgqdµpgq

where s is a complex variable and dµ any fixed Haar measure on G.
If π is irreducible, the integrals above converge absolutely for <s ą s0 for some s0 P C, and they
are represented by rational functions in q´s. As such rational functions, they admit a common
denominator independent of Φ and f .
One proves that the subvector space

Ipπq :“ spanCZ

ˆ

Φ, s`
n´ 1

2
, f

˙

Ă C
`

q´s
˘

as Φ and f vary, is a fractional ideal of C rqs, q´ss and admits a generator of the form P pq´sq´1

for P a complex polynomial. Normalize it so that P p0q “ 1 and set

Lps, πq :“ P pq´sq´1.

This is a quite involved definition, but in many important cases the L-function associated to
a representation π is in fact very simple.

Example 5 ([16], example 1.3.5). If π is supercuspidal and n ą 2, then Lps, πq “ 1.

Example 6 ([9], chapter 3). Let π “ IndG,T pχq be the parabolic induction from a character χ of
the diagonal torus T . If π is unramified with Satake parameter tχ, then Lps, πq “ det p1´ q´stχq

´1.

We are now ready to define the ε-factor for a representation π P ReppGq.

Definition 7. Fix ψ ‰ 1 a nontrivial additive character of F and define the Fourier transform of
a Bruhat-Schwartz function Φ as

pΦpxq :“

ż

MatnpF q

Φpyqψ pTrpyxqq d y

where d y is the self-dual Haar measure on MatnpF q. Then there exists a rational function γ “
γps, π, ψq such that

Z

ˆ

pΦ, s`
n´ 1

2
, f̆

˙

“ γps, π, ψqZ pΦ, s, fq

for every f and every Φ, where we denote f̆pgq :“ fpg´1q. Therefore we set

εps, π, ψq :“ γps, π, ψq
Lps, πq

Lp1´ s, rπq

and it turns out that εps, π, ψq is a monomial in q´s.

12



Remark. We focus on ε rather than γ because it can be proven to have a simpler form (namely
it is a monomial in q´s) and because it satisfies some very nice functional relations mirroring the
L-function; e.g. if α is the modulus character of F we have

Lps, π b αtq “ Lps` t, πq εps, π b αt, ψq “ εps` t, π, ψq.

Finally, it remains to define the ε-factor for a Weil-Deligne representation. This is not at all
as easy as the above definitions, and in fact besides a few particular cases there is no explicit
definition.
Let φ “ pρ,Nq be an n-dimensional semisimple Weil-Deligne representation. We reduce the
problem to defining an ε-factor for representation of the usual Weil group by setting

εps, φ, ψq :“ εps, ρ, ψq det
´

´Φ|
V IF {V

IF
N

¯

where Φ is again a geometric Frobenius element in WF and εps, ρ, ψq is the ε-factor associated
to a semisimple representation of WF which we now go on to “define”, following the approach in
[12], where the following theorem is Theorem A of the Introduction. Another (simpler) proof of
this theorem can be found in [8], chapter 4.

Theorem 13 (Existence of the Local Constant). Fix F and a nontrivial additive character ψ ‰ 1
of F . Then there is a unique way to associate to each finite separable extension E Ą F a complex
number λpE|F, ψq and to each (equivalence class of) complex semisimple representation ρ of WE

a complex number εpρ, ψE|F q (where ψE|F “ ψ ˝ TrE|F ) such that

1. if dim ρ “ 1 and then ρ “ χE is a character of Eˆ, then εpρ, ψE|F q corresponds to the usual
ε-factor defined in the abelian case;

2. ε is multiplicative on short exact sequences, i.e.

εpρ1 ‘ ρ2, ψE|F q “ εpρ1, ψE|F qεpρ2, ψE|F q;

3. if ν is a representation of WF induced by a representation ρ of WE (there’s a canonical
embedding WE Ă WF ), then

εpν, ψq “ λpE|F, ψqdim ρεpρ, ψE|F q.

Given the theorem, denote as above by α the modulus of k, i.e. αpxq “ |x|k. We set

εps, ρ, ψq :“ εpαs´
1
2 b ρ, ψq

and we finally managed to ”define” our ε-factor for a representation of WE.
Before giving a few examples, let’s remark better what condition 6 of the LLC means. Suppose

we have defined for every n a correspondence between irreducible supercuspidal representations
of GLnpF q and irreducible n-dimensional semisimple Weil-Deligne representations. The fantastic
feature of the LLC is that it respects parabolic induction, in the sense that supercuspidal represen-
tations build up irreducible representations on the representation side, just with the same pattern
as irreducible Weil-Deligne representation build up reducible ones on the Galois side. Let’s see
how (we roughly follow [9] here, section 4.2).
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Let σ P IrreppGLmpF qq be supercuspidal and set n “ mr. Denote by σpsq “ σ b | det |sF for
every complex number s. We call a segment a representation

∆ “ σ b σp1q b . . .b σpr ´ 1q

of GLnpF q, with the obvious embedding of
Śr

i“1 GLmpF q Ă GLnpF q.
Two segments ∆1 “ σ1b . . .bσ1pr1´ 1q and ∆2 “ σ2b . . .bσ2pr2´ 1q are linked if none contains
the other and the union is still a (necessarily larger) segment. We say ∆1 precedes ∆2 if they are
linked and σ2 “ σ1pkq for some positive integer k.

Theorem 14 (Langlands quotient theorem). 1. For every segment ∆ the parabolically induced
representation IndG,P p∆q has a unique irreducible quotient Qp∆q, called the Langlands quotient.
Moreover, this is essentially square-integrable, i.e. up to twisting by a character of Fˆ every
matrix coefficient is in L2pZzGq.

2. Moreover, every square integrable representation π of G has the form Qp∆q for some ∆ “

σ b . . .b σpr ´ 1q with σ
`

r´1
2

˘

unitary.

3. In general, given segments ∆1, . . . ,∆r such that if i ă j then ∆i does not precede ∆j, then
the induced representation

IGP pQp∆1q b . . . Qp∆rqq

admits a unique irreducible quotient Qp∆1, . . . ,∆rq which we again call the Langlands quo-
tient.

4. Finally, every irreducible admissible representation of GLnpF q is isomorphic to some Qp∆1, . . . ,∆rq.

These results are basically due to Bernstein and Zelevinski.
Suppose then that the bijection between irreducible Weil-Deligne reps and irreducible super-

cuspidals has been built:
ρ ÞÑ πρ

. Now if ρbSpprq is an indecomposible representation of W 1
F , it is natural to consider the segment

∆ “ πρ b . . .b πρpr ´ 1q

and thus thanks to the previous theorem we have a natural association

ρb Spprq ÞÑ Qp∆q.

Finally, suppose we have a semisimple Weil-Deligne representation that we decomposed in inde-
composable components

ρ “ pρ1 b Sppr1qq ‘ . . .‘ pρm b Spprmqq

Then if ∆i is the i-th segment given by the indecomposable representation ρi b Sppriq as above,
we have the natural association

ρ ÞÑ Qp∆1, . . . ,∆mq.
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Example 7. This example is meant to (partially) answer a question by Iurie.
Consider the Weil-Deligne representation Sppnq defined as in example 4, what’s the correspondent
admissibile representation? It is easy to see that Sppnq is indecomposable but very far from being
irreducible, e.g. using the notation of example 4 the span of ej, . . . , en for each 1 ă j ď n is a
proper subrepresentation.
Using the procedure mentioned above, we associate to Sppnq the Langlands quotient of the segment

∆ “ 1b . . .b 1pn´ 1q “ 1b | ¨ |1F b . . .b | ¨ |
n´1
F ,

(denoting by 1 the trivial representation) that is, πSppnq “ Qp∆q is the unique irreducible quotient
of

IGLpnq,B

`

1ˆ . . .ˆ | ¨ |n´1
F

˘

where B is the usual Borel of upper triangular matrices and we are parabolically inducing the
aforementioned character of the diagonal torus.
It is well-known that this parabolically induced representation is a non-irreducible principal series,
and it turns out its unique irreducible quotient is a Steinberg representation.

What about the subrepresentations of Sppnq we outlined above? If we fix 1 ă j ď n, we’ll get
the subrepresentation ρj Ă Sppnq of dimension n´ j ` 1 spanned by ej, . . . , en.
By relabeling this basis as fi “ ei´j`1 we obtain that the semisimple part acts like Sppn´ j ` 1q
up to a twist of } ¨}j´1, while the nilpotent operator is the exactly the one defined for Sppn´j`1q.
Hence, the correspondent admissible representation will be a twist of the Steinberg representation
associated to Sppn´ j ` 1q.

Let’s try to be even more concrete and give one more example of how we construct the cor-
respondence, starting from the Galois side. Suppose ρ : WF ÝÑ T Ă GLnpCq is a continuous
homomorphisms, so that it is determined by n characters χi of Fˆ. Setting N “ 0 we obtain a
semisimple Weil-Deligne representation φ P RepnpW

1
F q.

The data tχiu is all we have, so the natural way to associate to it a representation is taking the
parabolically induced principal series

π “ IndG,TN pχ1, . . . , χnq ,

where N is the unipotent subgroup of upper triangular unipotent matrices.
If π is irreducible, this is exactly the representation we associate to φ in AnpF q, moreover we’ve
seen before that π is reducible if and only if χi “ χj ¨ | ¨ |F for some i, j. If this is the case, we
associate to φ a subquotient of π, the Langlands subquotient, explicitly defined in the following
way.
We can associate to each χi a complex number si such that

|χi|C “ | ¨ |
si
F

and the real part of the si’s is uniquely determined. Suppose that the si’s are ordered so that they
have nonincreasing real parts, then the Langlands subquotient is the unique irreducible quotient of
π “ IndG,TN pχ1, . . . , χnq. Note that the existence and uniqueness of such quotient is guaranteed
by the theorem mentioned above!
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